Smoothed Functional Inverse Regression

نویسندگان

  • Louis Ferré
  • Anne-Françoise Yao
  • ANNE-FRANÇOISE YAO
چکیده

A generalization of Sliced Inverse Regression to functional regressors was introduced by Ferré and Yao (2003). Here we first address the issue of the identifiability of the Effective Dimension Reduction (EDR) space. Next, we estimate the covariance operator of the conditional expectation by means of kernel estimates. Consistency is proved and this extends the results of Zhu and Fang (1996) in the multivariate context to the functional case. We also suggest a new way for estimating the EDR Space for functional data which avoids inverting the covariance operator of the regressor. We apply our method to a prediction problem where the regressors are spectrometric curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Analysis under Inverse Gaussian Model: Repeated Observation Case

 Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...

متن کامل

A Smoothed Maximum Score Estimator for Multinomial Discrete Choice Models

We propose a semiparametric estimator for multinomial discrete choice models. The term “semiparametric” refers to the fact that we do not specify a particular functional form for the error term in the random utility function and we allow for heteroskedasticity and serial correlation. Despite being semiparametric, the rate of convergence of the smoothed maximum score estimator is not affected by...

متن کامل

Smoothed ANOVA Modeling

32.1 Smoothed ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 32.1.1 Zhang et al.’s SANOVA proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 32.1.2 Maŕi-Dell’Olmo et al.’s SANOVA proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 32.2 Some Specific Application...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

A Derivative-Free Trust-Region Algorithm for the Optimization of Functions Smoothed via Gaussian Convolution Using Adaptive Multiple Importance Sampling

In this paper we consider the optimization of a functional F defined as the convolution of a function f with a Gaussian kernel. This type of objective function is of interest in the optimization of the expensive output of complex computational simulations, which often present some form of deterministic noise and need to be smoothed for the results to be meaningful. We introduce a derivative-fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005